Case report

CLINICAL, PATHOLOGICAL, AND CT SCAN FINDINGS OF MULTIPLE COENURUS CEREBRALIS CYSTS IN A NON-NATIVE LAMB IN IRAN

N. GHOLAMI¹, P. DEHGHAN RAHIM ABADI², M. H. NAJI ZADEH², D. GOLCHIN³, H. ILDAR ABADI⁴ & H. RASMI ATIGH²

¹Department of Clinical Science, Faculty of Veterinary Medicine, University of Shahid Chamran, Ahvaz, Iran; ²Department of Clinical Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; ³Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; ⁴Student of School of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran

Summary

Coenurus cerebralis is the larval stage of Taenia multiceps which involves particularly the central nervous system of humans and ungulates. A six-month-old Charollais lamb was presented with cortical blindness, dullness, convulsion, head deviation, reluctance to move, drooling of saliva and ataxia. Haematological findings revealed an inflammatory process. CSF analysis showed leukocytosis associated with increased total protein. By CT imaging, nine cysts were detected in the cerebrum and one in the cerebellum. Hounsfield units were below 10 in all these regions. CT images perfectly revealed multiple Coenurus cysts in various parts of the brain, which was confirmed by necropsy. At necropsy, cysts of variable size were noted at different anatomical sites of the brain. In the cerebrum, atrophy, liquefactive necrosis and mild demyelination were presenty adjacent to the cystic structures. Perivascular and perineuronal oedema, neuronal degeneration, hyperaemia and thrombosis were also seen in the cerebrum. The meninges revealed oedema, thrombosis, and mononuclear meningitis. Based on authors’ knowledge, this is the first study in Iran on Coenurus cysts in a lamb brain utilising CT scan.

Key words: Charollais lamb brain, clinicopathological manifestation, CT scan, Iran, natural Coenurus cerebralis infestation

Coenurus cerebralis is a bladder-like cyst known as the larval stage of Taenia multiceps (Avcioglu et al., 2011). The disease associated with C. cerebralis has been named as gid or sturdy which particularly involves central nervous system of human and ungulates including sheep, goat, cattle, buffalo, deer, yak, horse and pig and
results in space occupying lesion in nervous tissue (Abera et al., 2016; Mokhber Dezfooli et al., 2019). *T. multiceps* has a worldwide distribution and lives in small intestine of carnivores as definitive hosts (Afonso et al., 2011; Scott, 2012). Coenurosis occurs in Asia, Africa, America and some area of Europe (Gazioglu et al., 2017). Its prevalence is about 1.9–9.8% in Asia and Africa (Scala et al., 2007). In Iran, the disease has been reported in sheep, goats and wild goats (Tavassoli et al., 2011; Mokhber Dezfooli et al., 2019). Cysts can occur in any part of brain and spinal cord but are mostly seen in cerebral cortex. In sheep, the cysts are more often present in subarachnoid space. Because they can easily feed from cerebrospinal fluid (Haridy et al., 2013).

Coenurosis in sheep is manifested in three consecutive stages: acute, quiescent and chronic. In acute form, onset of illness is usually 10 days after parasite egg ingestion and is a result from immigration of oncospheres thorough brain tissue. Maturation of *C. cerebralis* may take 7–8 months and within this period, no signs can be detected and the cysts get larger following increased fluid volume (quiescent phase) (Gonzalo-Orden et al., 2000; Scala et al., 2007; Miran et al., 2015; Abera et al., 2016). Chronic form is more common in older sheep and is caused by mature cysts. At this stage, affected animals show symptoms including depression, head pressing and deviation, blindness, ataxia, uncontrolled and circular movements which may proceed to paralysis and convulsion (Scala et al., 2007; Miran et al., 2015; Mokhber Dezfooli et al., 2019). Diagnosis is usually based on clinical findings and interpretation of these signs can be helpful to locate the cyst (Gazioglu et al., 2017). Although confirmation of diagnosis is by necropsy and observation of fluid-filled cyst containing numerous scoleces surrounded by a thin and transparent wall, radiography and ultrasonography are mentioned as supplementary tools. There are a few reports about confirmation of cyst presence in brain by magnetic resonance imaging (MRI) and computed tomography (CT) scan methods (Gonzalo-Orden et al., 2000; Afonso et al., 2011; Gazioglu et al., 2017).

The aim of this study was to describe clinical, histopathological and CT findings of coenurosis caused by multiple *C. cerebralis* in a non-native lamb in Iran.

Case description

In late summer 2019, a six-month-old Charollais lamb was examined with history of dullness, reluctance to move, drooling of saliva, head deviation, frequent convulsion, ataxia, and reduced appetite. Clinical examination revealed cortical blindness, tachycardia (160/minute), tachypnea (60/minute) and increase in body temperature (40.5 °C). A 5-mL blood sample was collected in EDTA coated tubes from the jugular vein and sent to the laboratory for haematologic examination, which showed increased white blood cell count, elevated plasma fibrinogen concentration, and higher neutrophil count compared to normal values (Table 1).

Two mL of cerebrospinal fluid (CSF) were collected from the lumbosacral region with a 18 gauge needle and a syringe, following sedation. CSF volume was normal and it appeared clear. CSF analysis showed total protein concentration of 75 g/L and WBC of 0.65 G/L (Table 2). CSF culture resulted in no bacterial growth.

After the lamb was anaesthetised (intravenous ketamine at a dose rate of 22 mg/kg was administrated for induction of
anaesthesia, providing 10–15 minutes of anaesthesia for imaging purposes), CT images were obtained in transverse plane from cephalic region using a multidetector CT scanner (Somatom spirit 2, Siemens, Germany) aiming evaluation of brain structure (X-Ray tube potential: 130 kV, pitch: 1, rotation time: 1 second, slice thickness: 1 mm). CT scan images revealed presence of ten cysts in the brain; nine in the cerebrum and one in the cerebellum. These cystic structures were distinguishable from surrounding tissue by their lower density: below than 10 Hounsfield units (Fig. 1).

The lamb was euthanised for welfare reasons by intravenous injection of sodium pentobarbital at a dose rate of 150 mg/kg according to AVAM guidelines for the euthanasia, three days after CT imaging. Multiple unilocular *C. cerebralis* cysts were observed at necropsy. The variably sized cysts, 1.5 to 5.5 centimeters in diameter, contained clusters of scolices attached to cyst walls. *Coenurus* cysts were scattered in different parts of the cerebrum and the cerebellum; one cyst in each of the frontal and occipital lobes, two cysts in parietal and temporal lobes, three cysts in cerebral white matter, and one cyst in the cerebellum. Adjacent brain tissue was compressed by the cysts, so that gyri and sulci were obliterated. Hypoaemia was apparent in the cerebrum and the cerebellum (Fig. 2). No cystic structures were seen at the periphery of the spinal cord and in other parts of the body.

The brain was immersed in 10% neutral buffered formalin and submitted for histopathological evaluation. Representa-

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Affected lamb</th>
<th>Normal range*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/L)</td>
<td>97</td>
<td>90–150</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>33–40</td>
<td>27–45</td>
</tr>
<tr>
<td>RBC (T/L)</td>
<td>14.0</td>
<td>9.0–15.0</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>35.00</td>
<td>28–40</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>9.50</td>
<td>8–12</td>
</tr>
<tr>
<td>MCHC (g/L)</td>
<td>335</td>
<td>310–340</td>
</tr>
<tr>
<td>WBC (G/L)</td>
<td>14.4</td>
<td>4.0–12.0</td>
</tr>
<tr>
<td>Segmented neutrophils (G/L)</td>
<td>9.2</td>
<td>0.7–6.0</td>
</tr>
<tr>
<td>Band neutrophils (G/L)</td>
<td>–</td>
<td>rare</td>
</tr>
<tr>
<td>Lymphocytes (G/L)</td>
<td>4.5</td>
<td>2.0–9.0</td>
</tr>
<tr>
<td>Eosinophils (G/L)</td>
<td>0.7</td>
<td>0–1.0</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>6</td>
<td>1–5</td>
</tr>
</tbody>
</table>

* Constable et al. (2017).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Affected lamb</th>
<th>Normal range*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (g/L)</td>
<td>75</td>
<td>23</td>
</tr>
<tr>
<td>WBC (G/L)</td>
<td>0.65</td>
<td>0.11</td>
</tr>
<tr>
<td>Segmented neutrophils (G/L)</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>Band neutrophils (G/L)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Scott (1992; 2010).
Clinical, pathological, and CT scan findings of multiple Coenurus cerebralis cysts in a non-native ...

Specimens were processed, embedded in paraffin blocks and cut in 5 µm thickness and then stained by the routine haematoxylin and eosin method.

Histopathological examination revealed thick eosinophilic cyst walls, with numerous protoscolices protruding from the inner aspect. Compressive atrophy was seen in both gray and white matter underneath the cysts, in addition to focally extensive liquefactive necrosis and mild demyelination. Mild multifocal perivascular and perineuronal oedema, diffuse hyperaemia, neuronal degeneration and thrombosis were noted in the affected cerebral tissue. Multifocal meningeal oedema, thrombosis and mononuclear meningitis with perivascular mononuclear infiltration were present in the overlying meninges of the affected area (Fig. 3–5).

Coenurosis is a major problem in sheep and goat industry and has a worldwide distribution (Avcioglu et al., 2011; Miran et al., 2015; Mokhber Dezfooli et al., 2019). The disease is endemic in the Middle East region. Its prevalence ranges between 0.09% and 18.65% in different...
parts of Iran (Tavassoli et al., 2011; Rahsan et al., 2018; Mokhber Dezfooli et al., 2019). Some authors suggested season of the year as a risk factor for occurrence of the disease. At the beginning of spring, pastures start to grow in Iran and abundant forage is available for the herds. This may explain increased occurrence of coenurosis at this time. On the other hand, high moisture and temperate weather at this season may have a contributory role for survival of parasite’s egg at pasture. It is assumed that coenurosis usually infects sheep (especially lambs) more than goats (Tavassoli et al., 2011; Soundararajan et al., 2016; Mokhber Dezfooli et al., 2019). There may be age-related resistance against the disease, although, it’s causal
mechanism is not known yet (Afonso et al., 2011). Coenurus cysts have a high tendency to infect the central nervous system and masses result in increased intracranial pressure being space occupying (Mokhber Dezfoil et al., 2019). Clinical manifestations can be different depending on cyst’s size and location an extent of brain tissue destruction (Scala et al., 2007; Avcioglu et al., 2011). Clinical signs of described lamb matched those mentioned in the literature references. In a study conducted by Achenef et al. (1999), tachypnea and tachycardia were recorded in 20 percent of infected animals. They also believed that head deviation only can be seen in the early stages of the disease and circling appeared as the disease progressed. Some researchers assumed that investigation of head tilt was more useful as an aid to locating Coenurus cyst in brain tissue, than circling movements (Gazioglu et al., 2017). In this case, head tilt was observed but recumbency and circling were not seen. Circling results from cyst presence in one of the cerebral hemispheres (El-Neweshy et al., 2019), but imaging and necropsy findings in this lamb suggested the presence of multiple cysts in both cerebral hemispheres. This may explain why circling was not evident in this case.

Haematological findings including leukocytosis, neutrophilia and elevation of plasma concentration of fibrinogen were indicative of an inflammatory process which resulted in a marked increase in body temperature. Possibly, extensive lesions in brain tissue have caused recall of inflammatory cells and leukocytosis. On the other hand, besides other clinical signs, analysis of CSF can arouse suspicion of coenurosis. Increased total protein and leukocytes in CSF are indicators of inflammatory response. As two separate study by Forjani Kish et al. (2013) and Zobba et al. (2014) have shown, these two analytes were elevated in animals infected with coenurosis, whereas in another research by Mokhber Dezfoil et al. (2019), CSF leukocyte count was normal in a wild goat infected with coenurosis yet total protein was increased.

By the way, there is no pathognomonic sign for this disease, and other space occupying lesions like abscesses, intracranial haemorrhage and even infection with Oestrus ovis larvae can produce similar signs (Achenef et al., 1999; Zobba et al., 2014; Amer et al., 2017). Therefore, necropsy and other additional diagnostic tools like ultrasonography, radiography, CT scan and MRI can be used for differential diagnosis. CT imaging is an effective practice for ante mortem diagnosis and precise localisation of the cysts in the brain tissue.

By CT imaging of the lamb, multiple cysts were detected as hypodense areas in different parts of the brain. Gazioglu et al. (2017) had described similar CT findings but in contrast to our study, they reported that cyst wall appeared as a hyperattenuated line because of calcification, a lesion that was not seen in histopathologic examination of the present case. Skull bone can be softened by pressure of the growing cysts (Achenef et al., 1999; Evangelisti et al., 2016) but in the present study, no change in skull bone at necropsy was noticed, however, thinning of bone diameter was apparent on CT images. Coenurus cysts often develop in both cerebral hemispheres (96%) and less frequently in the cerebellum (4%). Most common sites for C. cerebralis cyst formation are the subarachnoid space and brain parenchyma respectively (Haridy et al., 2013). The cysts have a thin and translucent wall and usually contain several scolices which
form cluster shape aggregation and are adherent to cyst's wall (Haridy et al., 2013). The cysts found in the brain of this case, had similar specifications.

Like other studies, hyperaemia was evident in the superficial parts of the cerebrum and the cerebellum, adjacent to the cyst’s wall (Amer et al., 2017). Either single or double cysts patterns are commonly present within brain tissue (Hobbenaghi et al., 2014). Simultaneous occurrence of multiple cysts in different sections of the brain is rare, but in the this case, ten Coenurus cysts were developed in various parts of the brain. Previously, Hobbenaghi et al. (2014) and Amer et al. (2018) had reported occurrence of several small Coenurus cysts in sheep brain. Presence of multiple cysts in the brain makes the disease course shorter. There are limited reports of cerebellum involvement with C. cerebralis cyst (Avcioğlu et al., 2011; Soundararajan et al., 2016) whereas we detected the presence of one cyst in this organ. Histopathologic examinations revealed compressive atrophy in both gray and white matter, focally extensive liquefactive necrosis, and mild demyelination adjacent to the cystic structures. The same histological changes have been reported in the cerebrum by Haridy et al. (2013), Abera et al. (2016) and Gazioglu et al. (2017). Mild multifocal perivascular and perineuronal oedema, diffuse hyperaemia, neuronal degeneration, and thrombosis were presented in the studied samples. It has been stated that lymphoplasmacytic and eosinophilic infiltration of the necrotic area would be anticipated in addition to the presence of macrophages (Haridy et al., 2013; Amer et al., 2017). The same cellular infiltration has been reported at the periphery of the cyst walls (Gazioglu et al., 2017) with preponderance of eosinophils (Haridy et al., 2013; Abera et al., 2016; Gazioglu et al., 2017).

In contrast to previous studies (Haridy et al., 2013; Hobbenaghi et al., 2014; Farjani Kish et al., 2015; Abera et al., 2016; Amer et al., 2018; Gazioglu et al., 2017; Mokhber Dezfouli et al., 2019) gliosis, astrocytosis, and microgliosis were absent. That is while mild multifocal perivascular and perineuronal oedema and thrombosis are the novel histopathological findings in this study. Calcification and presence of giant cells at the periphery of the cyst walls that have been previously reported (Amer et al., 2018; Rahsan et al., 2018) were not observed in the present case. Meningeal hyperaemia and perivascular mononuclear infiltration were detected in earlier reports (Mokhber Dezfouli et al., 2019; Haridy et al., 2013; Rahsan et al., 2018) as well as in the present case. Multifocal meningeal oedema and thrombosis were additionally observed in the present lamb adjacent to the cyst walls. It is presumed that the large number of cystic structures and the significant extent of the affected cerebral tissue may have played a role in thrombosis.

Variation in occurrence of coenurosis in different regions of the world is influenced by several factors including the level of natural immunity of the hosts, presence of definitive hosts and difference in husbandry systems and deworming methods that are practiced (Gazioglu et al., 2017). Charollais sheep are recently imported from European countries to Iran for increasing meat production. Iran is identified as an endemic region for coenurosis but infestation of native sheep with multiple C. cerebralis cysts is uncommon (Hobbenaghi et al., 2014; Farjani Kish et al., 2015). Antibody production and complement-mediated lysis of oncospheres during early developing stages, are two main immunologic re-
sponse against taeniid cestodes in body of the intermediate host. Presence of multiple cysts in various parts of the brain, confirmed by necropsy or CT findings, suggested extensive larval migration through encephalic vessels following ingestion of large numbers of eggs of *T. multiceps* by the lamb. It can be concluded that either incompetent immune system of the lamb was incapable of provoking a strong and adequate immunologic reaction, or migration of oncosphere was so intensive that the immune system could not defeat it. It seems that exotic breeds are more susceptible to severe infection with coenurosis and therefore management factors that facilitate infection should be controlled.

Although coenurosis can be diagnosed by clinical signs, imaging techniques are used in valuable animals to specifically locate the cysts for surgical treatment (Scott, 2012; Khosa et al., 2016). Hence the present case was more precisely investigated to obtain more reliable data on the diagnosis, despite the costs.

REFERENCES

tomographic findings and clinical signs in a case of ovine coenurosis. The Veterinary Record, 146, 352–353.

Scott, P. R., 2012. Diagnosis and treatment of coenurosis in sheep. Veterinary Parasitology, 189, 75–78.

Paper received 01.05.2020; accepted for publication 20.07.2020

Correspondence:

Peyman Dehghan Rahim Abadi
Department of Clinical Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
e-mail: peyman.dehghan@ut.ac.ir