Short communication

PREVALENCE OF LISTERIA MONOCYTOGENES IN DOGS IN ISFAHAN, IRAN

H. A. ALIDOOSTI1, M. R. RAZZAGHI MANESH1, S. I. MASHHADY RAFIE2 & M. O. DADAR3

1Graduate of Faculty of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran; 2Department of Small Animal Internal Medicine, Faculty of Specialized Veterinary Science, Science and Research Brach, Islamic Azad University, Tehran, Iran; 3Institute of Scientific Applied Higher Education of Jahad-e-Keshavarzi, Center of Isfahan, Iran

Summary

Alidoosti, H. A., M. R. Razzaghi Manesh, S. I. Mashhady Rafie & M. O. Dadar, 2014. Prevalence of Listeria monocytogenes in dogs in Isfahan, Iran. Bulg. J. Vet. Med., 17, No 1, 69–73. Listeria monocytogenes is a Gram positive, facultative intracellular pathogen with the capacity to cause food poisoning outbreaks as well as severe illness in vulnerable human population groups. In this paper the faecal carriage rate of Listeria monocytogenes in domestic dogs in Isfahan city, determined from 92 faecal samples by bacteriological methods. Listeria monocytogenes was isolated from only one of the samples examined (1.08%). The serotype of isolated bacteria was 1/2b. It was concluded that stray dogs could be a reservoir of the organism as well as a source of human listeriosis in Iran. This is the first report on the isolation of Listeria monocytogenes from domestic dogs in Isfahan city.

Key words: dog, faeces, Listeria monocytogenes, Iran, Isfahan

Listeriosis caused by the Gram-positive, facultative intracellular bacterium Listeria monocytogenes is one of the leading causes of death due to foodborne illness in the industrialised world (Mehmet et al., 2006). In human, listeriosis is a relatively rare but very serious disease, with an estimated hospitalization rate that exceeds 90% and a mortality rate of approximately 15–30% (Mehmet et al., 2006).

L. monocytogenes strains are divided into 13 serotypes: 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e and 7 (Seeliger & Höhne, 1979). L. monocytogenes causes infections characterised by meningoencephalitis, septicaemia and abortion in animals and humans and is distributed in the environment (soil, sewage, and silage). It can also be isolated from the faeces of healthy animals and humans (Seeliger & Jones, 1986). Transmission of Listeria from animals to humans with direct contact is a possible but rare route (McLauchlin & Low, 1994; Greene &
Prevalence of Listeria monocytogenes in dogs in Isfahan, Iran

Prescott, 2012). Infected fleas could transmit L. monocytogenes (Dobler & Pfeffer, 2011). Listeriosis is a foodborne infection (Liu, 2006; Gandhi & Chikindas, 2007; Renier et al., 2011) so contaminated foods are the main source of the pathogen (Farber & Peterkin, 1991; Schönberg et al., 1996; Sireli et al., 2008).

Clinical listeriosis is relatively rare in most monogastric mammals such as dogs, cats, horses and pigs, but appears more commonly in rodents and lagomorpha, where listeriosis was first described (Murray et al., 1926; Gray & Killinger, 1966; Low & Linklater, 1985; Low & Donachie, 1997; Gyles et al., 2010). Notably, L. monocytogenes has also been isolated from clinically healthy monogastric mammals (Ryser & Marth, 2007). In monogastric animals listeriosis is rare and primarily manifests itself as septicæmia (Low & Linklater, 1985; Schroeder & Van Rensburg, 1993; Low & Donachie, 1997; Ryser & Marth, 2007). The agent has also been detected in the intestinal contents of dogs in several parts of the world, with a prevalence of 0.7%–3% (Iida et al., 1998; Yoshida et al., 2000) and thus presents a health risk for humans where humans and dogs are in close contact. Abortion, meningoencephalitis and other manifestations such as conjunctivitis are also possible, but their relative frequency differs by animal species and the main clinical manifestations of ruminant listeriosis are encephalitis, septicæmia and abortion (Low & Linklater, 1985; Low & Donachie, 1997; Evans et al., 2004; Ryser & Marth, 2007).

This study was carried out to investigate the possible presence and the carriage rate of Listeria monocytogenes in the intestinal contents of domestic dogs.

Rectal swabs from 92 domestic dogs brought to the clinics in the Isfahan province were collected aseptically from January to May 2012 in Carry-Blair Transport Medium (Oxoid CM519) and transported on ice to the laboratory. Fifty nine (64.1%) of the dogs were apparently healthy and the others (35%) were diarrhoeic at the time of sampling. The dogs were crossbred between 1 month and 5 years of age. Of them, 49% were males and 47 (51%) – females.

The samples were transferred into 0.1% peptone water and faecal suspensions were prepared by shaking. Then, 0.1 mL of each faecal suspension was added to 9 mL of Listeria Enrichment Broth (Listeria Enrichment Broth Base-Oxoid CM862 plus Listeria Selective Enrichment Supplement-Oxoid SR141) and incubated at 30 °C for up to 7 days. After 24 h, 48 h, and 7 days, 0.1 mL of each selective enrichment broth was inoculated onto Listeria Selective Medium (Listeria Selective Agar Base-Oxoid CM856 plus Listeria Selective Enrichment Supplement-Oxoid SR141) plates and incubated at 35 °C for up to 48 h. Typical colonies of Listeria were picked off the positive plate after incubation and characterised using standard procedures (Seeliger & Jones 1986; Quinn et al., 2000). The isolate was also identified by BD Phoenix Automated Microbiology System (BD Diagnostic Systems, Sparks, MD, USA). Stereotyping was on the basis of somatic and flagella antigens using Listeria O and H antisera (Denka Seiken 214362, Tokyo, Japan).

Listeria monocytogenes was isolated from only 1 (1.08%) of 92 canine faecal samples. The dog from which the pathogen was isolated was a 4-year-old female cross-breed, with diarrhoea at the time of sampling. Based on somatic (O) and flagella (H) antigens, L. monocytogenes strains are divided into 13 serotypes: 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d,
The faecal carriage rate of *L. monocytogenes* in dogs has not been investigated in most countries, including Iran. In our study, the faecal carriage rate was 1.08% in all dogs examined. This rate is similar to those mentioned above. The detected serotype is one of the 3 *L. monocytogenes* serotypes (1/2a, 1/2b, 4b). This is the most common cause of human listeriosis (Low & Donachie 1997; Iida et al., 1998; Sireli et al., 2008). Therefore dogs might act as a reservoir of *L. monocytogenes* and even be a source for listeriosis in humans in Isfahan city, Iran.

Clinical listeriosis is relatively rare in most monogastric mammals such as dogs, cats, horses and pigs, but *L. monocytogenes* has also been isolated from clinically healthy monogastric mammals (Ruža et al., 2000). Serotyping has been a classical tool in subtyping of *Listeria monocytogenes*. From the 13 known *L. monocytogenes* serotypes – 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e and 7 (Seeliger & Höhne, 1979) and 3 serotypes (1/2a, 1/2b, and 4b) cause the vast majority of clinical cases (Tappero et al., 1995). In our study serotype 1/2b was isolated and this serotype together with serotype 4b have been found to be the major serotypes, causing 30% mortality after the consumption of contaminated ready-to-eat foods, which include raw meat (Farber & Peterkin, 1991; Schönberg et al., 1996; Sireli et al., 2008). Serovar 4b strains are responsible for 33 to 50% of sporadic human cases, while bacteria recovered from food mostly belong to serogroup 1/2 (Rocourt & Coster, 1997). In Finland, the isolation rate of *Listeria monocytogenes* from the intestinal contents of dogs was reported as 0.7% (Husu & Asikainen, 1992). Similar to our results, in Germany *L. monocytogenes* was isolated from 4 (1.3%) of 300 faecal samples from dogs and the isolates were classified into serotypes 1/2b (3 strains) and 4ab (1 strain) (Weber et al., 1995). Several serotypes of the pathogen were isolated in Japan by Iida et al. (Iida et al., 1991; 1998). The prevalence of *Listeria monocytogenes* in the intestinal contents of healthy dogs was reported to be 0.9% (5/540) and the serotypes identified were 1/2c (1 strain), 4b (2 strains), and 4 (2 strains). Yoshida et al. (2000) investigated the incidence of the bacteria in raccoon dogs in Japan. Of the 104 raccoon dogs examined, only 1 (0.96%) was positive for the presence of *Listeria monocytogenes* and the serotype was identified as 4c. In epidemiological studies examining the prevalence of *Listeria monocytogenes* in domestic and wild animals, fecal carriage rates were 0.8% in pigs, 6.5% in rats (Iida et al., 1998), 1.25% in monkeys, and 0.79% in martens (Yoshida et al. 2000).

Ruža et al. (2000) provided the first description of listeriosis among chinchillas in the County of Međimurje in Croatia. In sera analysis of 3 horses, 1 dog, and 6 herdsmen for the presence of antibodies against *L. monocytogenes* by the Osebold agglutination assay on a commercial farm in Akyurt, Ankara, all horses, the dog and 5 herdsmen were seropositive (Mehmet et al., 2006).

In conclusion, our study showed that *Listeria monocytogenes* was isolated from only 1 (1.08%) of 92 faecal samples from home-owned dogs in the Isfahan province, Iran. The serotype of the canine isolated was the same as those reported in other European isolates.

Serotypes 1/2a, 1/2b and 4b cause the majority of clinical cases (Tappero et al., 1995) and in other reports 1/2b and 4b
serotypes were reported to cause mortality in humans (Farber & Peterkin, 1991; Schönberg et al., 1996; Sireli et al., 2008). Thus, the isolated serotype in our study (1/2b) is a zoonotic pathogen and has hygienic importance.

REFERENCES


Paper received 29.12.2012; accepted for publication 10.05.2013

Correspondence:

H. A. Alidoosti,
Graduate of the Faculty of Veterinary Medicine,
Islamic Azad University,
Shahrekord Branch,
Shahrekord, Iran