Original Contribution

MORPHOLOGY AND ULTRASONOGRAPHY OF THE PERICARDIAL AND EPICARDIAL ADIPOSE TISSUE IN HEALTHY RABBITS
(Oryctolagus cuniculus)

P. Yonkova1*, D. Vladova2, R. Dimitrov1, A. Rusenov3, D. Zaprjanova4, P. Atanassova5, M. Stefanov2

1Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
2Department of Morphology, Physiology and Nutrition of Animals, Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
3Department of Internal diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
4Department of Pharmacology, Physiology of Animals and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
5Department of Anatomy, Histology and Embryology, Medical University, Plovdiv, Bulgaria

ABSTRACT

Rabbits develop a visceral type obesity and therefore is exceptionally suitable as a model for lipid metabolism investigation. Ten clinically healthy New Zealand White rabbits from both genders, weighing from 3.5 to 3.7 kg were used. The blood plasma concentrations of total cholesterol and triglycerides were 1.45 ± 0.15 mmol/L and 0.63 ± 0.01 mmol/L, respectively. The highest amount of pericardial adipose tissue was observed around the free surface of the right ventricle and the apex of the heart. The average mass of pericardial adipose tissue was 3.72 ± 0.24 g (0.1% of body weight and 47% of heart weight).

By ultrasonography, pericardia adipose tissue was visualized as a moderately echoic homogeneous structure against the hyperechoic myocardium of the right ventricle. Its thickness was 3.2 ± 0.26 mm. The results of the present study showed that the rabbit was a suitable model for monitoring of quantitative changes in visceral fat depots in mammals, allowing their study in vivo by ultrasonography instead of utilizing dissection.

Key words: rabbits, pericardial adipose tissue, epicardial adipose tissue, ultrasonography

INTRODUCTION

The New Zealand White rabbit belongs to average rabbit breeds (2–5 kg) bred for meat production. It is characterized with a rapid growth rate and is prone to deposition of large amounts of fat. Rabbits are small and relatively inexpensive models for research purposes (1, 2).

The blood lipid profile in rabbits is similar to that in men. In this animal species, a central (visceral) type of obesity is developing, thus making it extremely appropriate for investigations on human lipid metabolism (3).

The reference values of total blood cholesterol in rabbits according to (4) are between 0.14 and 1.86 mmol/L, and those of triglycerides: from 0.90 to 1.55 mmol/L. (3) have established total cholesterol level of 1.99 mmol/L and triglycerides of 0.49 mmol/L in healthy male rabbits, and cholesterol values reported by (5) were between 0.90 and 1.4 mmol/L.

In the thorax, the visceral adipose tissue is localized in the mediastinum and around the heart (6). The pericardial adipose tissue (PAT) is located on the parietal layer of the pericardium (7) covers about 80% of the heart
and amounts to 20–50% of its weight (8). A relatively abundant PAT is observed in wild animals, guinea pigs, rabbits, domestic mammals and men (9,8). The increased amount of PAT results to both mechanical occlusion of the coronary blood circulation (10), and to increased influx of inflammatory mediators in coronary arteries, provoking the formation of atherosclerotic lesions (11).

Epicardial adipose tissue (EAT) lies on the myocardium and is covered by the visceral pericardium (12). Because of its close connection to the myocardium, (13) consider EAT to be the true visceral adipose depot. It is placed in the atrioventricular and interventricular grooves along the large coronary branches, around the right ventricular free wall and both atria (8,14).

EAT is a metabolically active structure that synthesizes a large number of bioactive molecules influencing the contractile properties of coronary arteries from one part, and a system of protection against the toxic effect of fatty acids on the myocardium and the local blood circulation bed (8,14).

In men, the thickness of epicardial and pericardial fat correlates positively to body weight, the fatty infiltration of the right ventricle and the increased left ventricular mass (10, 15).

(16) have observed many signs of human obesity in female New Zealand White rabbits that, after a 12-week high-fat diet, exhibited higher body weight by 46%, higher left ventricular weight by 52% (heart hypertrophy) and increased blood triglyceride concentrations.

The purpose of the present investigation was to describe the topography of pericardial and epicardial adipose tissue in rabbits and to determine in vivo their thickness.

MATERIAL AND METHODS
In this study, ten clinically healthy 4-month-old New Zealand White rabbits from both genders, weighing 3.5–3.7 kg were used. Animals were reared in cages at ambient temperature of 20 °C, air humidity 65–70% and 12-hour light day. Rabbits received ad libitum pelleted feed (18.3% crude protein, 12.5% crude fibre 1.2% fat) and water.

The experiment was carried out under the strict observance of the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes, the European Convention for the Protection of Pet Animals, and Law on Animal Protection in the Republic of Bulgaria (part IV: Experiments with animals, art 26, 27, 28, 24.01.2008; promulgated in Official Gazette 13/2008).

For accurate performance of ultrasonography and avoiding artefacts due to involuntary movements of animals, rabbits were anesthetized with 5 mg/kg Zoletil 50 (Virbac) IM. Each animal was restrained in dorsal recumbency. Ultrasound coupling gel (EKO gel, Lessa, Espana) was used for achieving appropriate contact. Ultrasonography equipment 600 VET (CHISON, China) was used, equipped with 7 MHz multifrequency convex transducer. Images were recorded on a thermal printer P93 (Mitsubishi, Japan).

Blood samples were obtained from all rabbits for analysis of blood cholesterol and triglyceride concentrations on a semi-auto chemistry analyzer BA-88A with commercial kits (Giesse Diagnostics, Italy).

After the end of the experiments rabbits were slaughtered in a licensed slaughterhouse (Euro Top, Stara Zagora) with concordance with requirements for humane treatment of animals. The thoracic cavity was open by incisions through the rib cartilages and removal of the sternum. After determining the positions of the pericardium and the heart, the latter were extirpated from the thoracic cavity. By means of a circular incision at the base of large blood vessels, the pericardium with the PAT was removed and weighed on analytical balance AQT-200 (ADAM Equipment Inc., Danbury
USA). Separately, the heart with the EAT was also weighed.

Blood parameters, morphology and ultrasonography data were statistically processed (STATISTICA v 6.1, StatSoft Inc. 2002). Data are presented as mean ± standard error of the mean (SEM).

RESULTS

The results from blood analysis showed that plasma concentrations of total cholesterol in rabbits (1.45 ± 0.15 mmol/L) and triglycerides (0.63 ± 0.01 mmol/L) were normal.

It is shown that in rabbits, the base of the heart and the pericardium are cranially situated in the transverse plane through the 3rd rib, and the apex of the heart and the pericardium with PAT reach the transverse plane through the 6th intercostal space or the 7th rib in a caudal direction. The long axis of the heart is parallel to the sternum, whereas the pericardium with the PAT are located on the dorsal surface of the transverse thoracic muscle at the level between the 2nd and the 5th sternebrae. The sternopericardial ligament is a very weak connective tissue band connecting the pericardium and the sternum.

After dissecting the thorax, the mediastinal adipose tissue is visible from the point of entry into the thorax to the base of the heart, whereas in caudal direction PAT covers almost completely the heart (Fig. 1).

The largest amount of PAT is observed around the right ventricular free wall and particularly around the caudal end of the right ventricle and the apex of the heart (Fig. 2).

Figure 1. Rabbit thorax after removal of the sternum – ventral view. MAT – mediastinal adipose tissue; PAT – pericardial adipose tissue. Bar 1,5cm.

Figure 2. Rabbit heart and pericardium after their removal from the thoracic cavity. RV – right ventricle. Pericardial adipose tissue around the right ventricle and heart’s apex (arrows). Bar 1,5cm.

The most significant epicardial adipose tissue was found out in the coronary groove, while a small amount of EAT, even none, was observed in interventricular grooves and on the right ventricular free wall (Fig. 3).

Figure 3. Rabbit heart after separation of the pericardial adipose tissue (PAT). RV – right ventricle; RA – right atrium; epicardial adipose tissue (arrows). Bar 1,5cm.

Because of the lack of a structure connecting the myocardium and EAT, its precise separation and weighing was not possible, and therefore the heart was weighed together with EAT.
The results from weight measurements showed that PAT weight was on the average 3.72 ± 0.24 g that was 0.1% of body weight. The heart weighed 7.89 ± 0.33 g i.e. 0.2% of body weight, therefore, PAT represents 47% of heart weight.

Rabbit heart and pericardium were identified ultrasonographically on the basis of their topographic anatomy features. The right ventricular wall appeared as a hyperechoic linear finding. PAT was observed on the caudal part of the right ventricle in the direction of heart’s apex. In this area, it was visualized as moderately echoic homogeneous structure against the hyperechoic myocardium.

The thickness of PAT as determined by ultrasonography was 3.2 ± 0.26 mm (Fig. 4).

Similarly to (17) and (7), we believe that transthoracic ultrasonography is a non-invasive and adequacy accurate method for visualization of cardiac structures and the adipose tissue.

In rabbits, we did not observe EAT, in contrast to ultrasonography studies of EAT and PAT in men (8) and sheep (14). Therefore, by means of ultrasonography, only PAT was visualized and quantitatively measured.

The weight measurements showed that PAT weight in rabbits was about 47% of the heart mass, just as in humans (8).

The present study allowed us to conclude that in pericardial adipose tissue in rabbits was abundant irrespective of the normal plasma concentrations of total cholesterol and triglycerides. Ultrasonography permitted its measurement in vivo and thus, the evaluation of the extent of visceral obesity.

REFERENCES
2. Григоров И. Как да отглеждаме зайци. Земиздат, София, стр. 50 -52, 2005.

